Muscle Spindles in the Deep Muscles of the Human Neck: A Morphological and Immunocytochemical Study

Abstract
Muscle spindle density is extremely high in the deep muscles of the human neck. However, there is a paucity of information regarding the morphology and immunoreactivity of these muscle spindles. The objective of this study was to investigate the intrafusal fiber content and to assess the myosin heavy chain (MyHC) composition of muscle spindles from human deep neck muscles. In addition to the conventional spindles containing bag1, bag2, and chain fibers (b1b2c spindle), we observed a number of spindles lacking bag1(b2c spindle) or bag2(b1c spindle) fibers. Both bag1and bag2fibers contained slow tonic MyHCs along their entire fiber length and MyHCI, MyHCIIa, embryonic, and α-cardiac MyHC isoforms along a variable length of the fibers. Fetal MyHC was present in bag2fibers but not in bag1fibers. Nuclear chain fibers contained MyHCIIa, embryonic, and fetal isoforms with regional variations. We also compared the present data with our previous results obtained from muscle spindles in human biceps brachii and the first lumbrical muscles. The allotment of numbers of intrafusal fibers and the MyHC composition showed some muscle-related differences, suggesting functional specialization in the control of movement among different human muscles.