Time-dependent Hartree-Fock theory of charge exchange: Application toHe2++ He

Abstract
An application of the time-dependent Hartree-Fock (TDHF) theory of charge transfer in atomic collisions is presented. Probabilities for elastic and double symmetric charge exchange are calculated for a fixed laboratory scattering angle and for collision energies from 10 to 70 keV. The TDHF equations are solved using finite difference techniques and propagated in time using the Peaceman-Rachford alternating-direction implicit method. Plots of time-evolved charge densities are presented also.