Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS)

Abstract
This paper describes the technological developments underlying the realization of a reliable and reproducible microchip-based stimulator with a large number of stimulus electrodes. A microchip-based stimulator with over 500 electrodes for suprachoroidal transretinal stimulation (STS) is proposed in this paper, and an example is presented. To enhance reliability and reproducibility for such a large array, we introduce a flip-chip bonding technique and place microchips on the reverse side of a substrate. A square microchip of size 600 microm was fabricated using 0.35 microm standard CMOS process technology. Twelve microchips were flip-chip bonded on a polyimide substrate through Au bumps. To evaluate the feasibility of the proposed device, we successfully fabricated a stimulator with 12 microchips and 118 electrodes made of Pt/Au bumps, and demonstrated their operation in a saline solution for 2 weeks. Also, to evaluate the device operation in vivo, a stimulator with one active IrO(x) electrode was implanted into the scleral pocket of a rabbit and electrical evoked potential (EEP) signals with a threshold of 100 microA were obtained. We also fabricated a simulator with 64 microchips that has 576 electrodes (9 electrodes in a microchip times 64 microchips).