Genetic variability and expression of phenological and morphological differences in populations of Delia radicum (Diptera: Anthomyiidae)

Abstract
In this study, survival to adult stage, duration of development of the immature stages, egg micromorphology, DNA polymorphism, and reproductive compatibility were measured for early- and late-emerging phenotypes of Delia radicum Linneaus to determine whether both phenotypes had evolved differences other than the duration of puparial development and to find the most likely genetic system controlling the expression of both phenotypes. Survival to adult stage was not significantly different between the early- and late-emerging phenotypes. Random amplified polymorphic DNA (RAPD) primers tested suggest that it is possible to distinguish an early-emerging fly from a late-emerging fly. Furthermore, the results suggest that the early- and late-emerging phenotypes differ not only in the timing of adult emergence but also in their egg structure (egg micromorphology) and in their larval and puparial mortality. These two phenotypes are not reproductively or ecologically isolated. The genetic system controlling the expression of early and late emergers in a population of D. radicum is probably an adaptive strategy reducing predator and parasitoid pressures, optimizing resource utilization, and ensuring survival of D. radicum during atypical winters. This strategy could eventually lead to temporal sympatric speciation if there are changes in a few key loci responsible for host plant selection and fitness on a new host.