Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

Top Cited Papers
Open Access
Abstract
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Influenza viruses that originate from avian species likely have to acquire adapting amino acid changes to replicate efficiently in mammals. Two amino acid changes in the polymerase PB2 protein—a glutamic acid to lysine change at position 627 or an aspartic acid to asparagine change at position 701—are known to allow influenza viruses of avian origin to replicate efficiently in mammals. Interestingly, the pandemic H1N1 viruses (which possess an avian-like PB2 gene) do not encode the ‘human-type’ amino acids PB2-627K and PB2-701N. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of PB2-627K and allows efficient replication of highly pathogenic H5N1 and pandemic H1N1 viruses in mammalian species. We also present the X-ray crystal structure of the C-terminal portion of a pandemic H1N1 PB2 protein. The basic amino acid at position 591 fills a distinctive cleft found in the PB2 proteins of H5N1 viruses. We also speculate on the biological significance of the altered surface of the H1N1 PB2 protein.

This publication has 32 references indexed in Scilit: