A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter

Top Cited Papers
Open Access
Abstract
Central to the role of the mitochondrion in cellular metabolism is its ability to control the fluxes of the key signalling ion, Ca2+. This is done by a highly selective ion channel known as the mitochondrial calcium uniporter. The molecular nature of this channel has remained elusive, but now two groups report the identification of a 40-kilodalton protein in the inner membrane of mitochondria as the active channel of the uniporter. This protein contains two transmembrane domains and exhibits calcium-channel activity in vitro and in vivo. Mitochondrial Ca2+ homeostasis has a key role in the regulation of aerobic metabolism and cell survival1, but the molecular identity of the Ca2+ channel, the mitochondrial calcium uniporter2, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator3, is present in organisms in which mitochondrial Ca2+ uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca2+ uptake. MCU overexpression doubled the matrix Ca2+ concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca2+ concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca2+ uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.