Crystallization and Second-Order Transitions in Silicone Rubbers

Abstract
In the course of an investigation to determine which rubbers might be suitable for use at low temperatures, interferometric measurements of the length-temperature relationships of silicone rubbers have been made. Crystallization was found between −60° and −67° C in Dow-Corning Silastic X-6160 and in General Electric 9979G silicone rubber, the latter of which contains no filler. Crystallization between −75° and −85° C was found in Silastic 250. Melting occurred over a range of temperature above the temperature of crystallization. The volume change on crystallization varied from 2.0 to 7.8 per cent. No crystallization or melting phenomena were observed in Silastic X-6073 between −180° and +100° C. All types of silicone rubber exhibited a second-order transition at about −123° C, the lowest temperature at which such a transition has been observed in a polymer. The coefficient of linear thermal expansion of silicone rubbers containing no filler was found to be about 40×10−5/degree C between −35° and 0° C.