Craniotopic updating of visual space across saccades in the human posterior parietal cortex

Abstract
The neural mechanisms underlying the craniotopic updating of visual space across saccadic eye movements are poorly understood. Previous single-unit recording studies in primates and clinical studies in brain-damaged patients have shown that the posterior parietal cortex (PPC) has a key role in this process. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to disrupt the processing within the PPC during a task that requires craniotopic updating: double saccades. In this task, two targets are presented in quick succession and the subject is required to make a saccade to each location as accurately as possible. We show here that TMS delivered to the PPC just prior to the second saccade effectively disrupts the craniotopic coding normally observed in this task. This causes subjects to revert to saccades more consistent with a representation of the targets based on their positions relative to one another. By contrast, stimulation at earlier times between the two saccades did not disrupt performance. These results suggest that extraretinal information generated during the first perisaccadic period is not put into functional use until just prior to the second saccade.