Abstract
Visual system has been proposed to be divided into two, the ventral and dorsal, processing streams. The ventral pathway is thought to be involved in object identification whereas the dorsal pathway processes information regarding the spatial locations of objects and the spatial relationships among objects. Several studies on working memory (WM) processing have further suggested that there is a dissociable domain-dependent functional organization within the prefrontal cortex for processing of spatial and nonspatial visual information. Also the auditory system is proposed to be organized into two domain-specific processing streams, similar to that seen in the visual system. Recent studies on auditory WM have further suggested that maintenance of nonspatial and spatial auditory information activates a distributed neural network including temporal, parietal, and frontal regions but the magnitude of activation within these activated areas shows a different functional topography depending on the type of information being maintained. The dorsal prefrontal cortex, specifically an area of the superior frontal sulcus (SFS), has been shown to exhibit greater activity for spatial than for nonspatial auditory tasks. Conversely, ventral frontal regions have been shown to be more recruited by nonspatial than by spatial auditory tasks. It has also been shown that the magnitude of this dissociation is dependent on the cognitive operations required during WM processing. Moreover, there is evidence that within the nonspatial domain in the ventral prefrontal cortex, there is an across-modality dissociation during maintenance of visual and auditory information. Taken together, human neuroimaging results on both visual and auditory sensory systems support the idea that the prefrontal cortex is organized according to the type of information being maintained in WM.