Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Alocasia macrorrhiza in Response to Step Changes in Irradiance

Abstract
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and pool sizes of RuBP and P-glycerate were examined in the tropical understory species Alocasia macrorrhiza following step changes in photon flux density (PFD). Previous gas exchange analysis of this species following a step increase in PFD from 10 to 500 micromoles quanta per square meter per second suggested that the increase in photosynthetic rate was limited by the rate of increase of Rubisco activity for the first 5 to 10 minutes. We demonstrate here that the increase in photosynthetic rate was correlated with an increase in both the activation state of Rubisco and the total kcat (fully activated specific activity) of the enzyme. Evidence presented here suggests that a change in the pool size of the naturally occurring tight binding inhibitor of Rubisco activity, 2-carboxyarabinitol 1-phosphate, was responsible for the PFD-dependent change in the total kcat of the enzyme. RuBP pool size transiently increased after the increase in PFD, indicating that photosynthesis was limited by the capacity for carboxylation. After 5 to 10 minutes, RuBP pool size was again similar to the pool size at low PFD, presumably because of the increased activity of Rubisco. Following a step decrease in PFD from 500 to 10 micromoles quanta per square meter per second, Rubisco activity declined but at a much slower rate than it had increased in response to a step increase in PFD. This slower rate of activity decline than increase was apparently due to the slower rate of 2-carboxyarabinitol 1-phosphate synthesis than degradation and, to a lesser degree, to slower deactivation than activation. RuBP pool size initially declined following the decrease in PFD, indicating that RuBP regeneration was limiting photosynthesis. As Rubisco activity decreased, RuBP slowly increased to its original level at high PFD. The slow rate of activity loss by Rubisco in this species suggests a biochemical basis for the increased efficiency for CO2 assimilation of successive lightfleck use by species such as A. macrorrhiza.

This publication has 14 references indexed in Scilit: