Continuous Cardiac Output Monitoring by Peripheral Blood Pressure Waveform Analysis

Abstract
A clinical method for monitoring cardiac output (CO) should be continuous, minimally invasive, and accurate. However, none of the conventional CO measurement methods possess all of these characteristics. On the other hand, peripheral arterial blood pressure (ABP) may be measured reliably and continuously with little or no invasiveness. We have developed a novel technique for continuously monitoring changes in CO by mathematical analysis of a peripheral ABP waveform. In contrast to the previous techniques, our technique analyzes the ABP waveform over time scales greater than a cardiac cycle in which the confounding effects of complex wave reflections are attenuated. The technique specifically analyzes 6-min intervals of ABP to estimate the pure exponential pressure decay that would eventually result if pulsatile activity abruptly ceased (i.e., after the high frequency wave reflections vanish). The technique then determines the time constant of this exponential decay, which equals the product of the total peripheral resistance and the nearly constant arterial compliance, and computes proportional CO via Ohm's law. To validate the technique, we performed six acute swine experiments in which peripheral ABP waveforms and aortic flow probe CO were simultaneously measured over a wide physiologic range. We report an overall CO error of 14.6%.