Rhodamine-based compounds as fluorogenic substrates for serine proteinases

Abstract
A new fluorogenic substrate for serine proteinases, bis(N-benzyloxycarbonyl-L-argininamido)Rhodamine [(Cbz-Arg-NH)2-Rhodamine], was synthesized, purified and chemically and enzymically characterized. This compound, which employs Rhodamine as a fluorophoric leaving group, is the first in a series of substrates designed to measure the amidase activity of proteinases. Cleavage of one of the amide bonds of (Cbz-Arg-NH)2-Rhodamine by a trypsin-like serine proteinase converts the non-fluorescent bisamide substrate into a highly fluorescent monoamide product. Significant differences in the electronic absorption and fluorescence emission spectra and quantum yields of bis-, mono- and un-substituted Rhodamine are reported. Macroscopic kinetic constants for the interaction of (Cbz-Arg-NH)2-Rhodamine with bovine trypsin, human and dog plasmin and human thrombin were determined. Compared with the corresponding 7-amino-4-methylcoumarin-based analog (Cbz-Arg-NH)2-Rhodamine exhibits an increase in sensitivity with these enzymes of 50- to 300-fold. The physical basis for this increase in sensitivity is discussed.