Pulmonary O2uptake kinetics as a determinant of high-intensity exercise tolerance in humans

Abstract
Tolerance to high-intensity constant-power (P) exercise is well described by a hyperbola with two parameters: a curvature constant (W') and power asymptote termed "critical power" (CP). Since the ability to sustain exercise is closely related to the ability to meet the ATP demand in a steady state, we reasoned that pulmonary O(2) uptake (Vo(2)) kinetics would relate to the P-tolerable duration (t(lim)) parameters. We hypothesized that 1) the fundamental time constant (τVo(2)) would relate inversely to CP; and 2) the slow-component magnitude (ΔVo(2sc)) would relate directly to W'. Fourteen healthy men performed cycle ergometry protocols to the limit of tolerance: 1) an incremental ramp test; 2) a series of constant-P tests to determine Vo(2max), CP, and W'; and 3) repeated constant-P tests (WR(6)) normalized to a 6 min t(lim) for τVo(2) and ΔVo(2sc) estimation. The WR(6) t(lim) averaged 365 ± 16 s, and Vo(2max) (4.18 ± 0.49 l/min) was achieved in every case. CP (range: 171-294 W) was inversely correlated with τVo(2) (18-38 s; R(2) = 0.90), and W' (12.8-29.9 kJ) was directly correlated with ΔVo(2sc) (0.42-0.96 l/min; R(2) = 0.76). These findings support the notions that 1) rapid Vo(2) adaptation at exercise onset allows a steady state to be achieved at higher work rates compared with when Vo(2) kinetics are slower; and 2) exercise exceeding this limit initiates a "fatigue cascade" linking W' to a progressive increase in the O(2) cost of power production (Vo(2sc)), which, if continued, results in attainment of Vo(2max) and exercise intolerance. Collectively, these data implicate Vo(2) kinetics as a key determinant of high-intensity exercise tolerance in humans.