New Scenario for Transition to Turbulence?

Abstract
Numerical study of the one-dimensional nonlinear partial differential equation, equivalent to that proposed [Recent Advances in Engineering Science (Springer-Verlag, Berlin, 1989)] to describe longitudinal seismic waves, is presented. The equation has a threshold of short-wave instability and symmetry, providing slow long-wave dynamics. It is shown that the threshold of the short-wave instability corresponds to a point of “continuous” (second order) transition from a spatially uniform state to a chaotic regime. Thus, contrary to the conventional scenarios, turbulence arises from the spatially uniform state as a result of one and the only one supercritical bifurcation.