NEUROSURGERY IN THE REALM OF 10−9, PART 1

Abstract
Nanotechnology as a science has evolved from notions and speculation to emerge as a prominent combination of science and engineering that stands to impact innumerable aspects of technology. Medicine in general and neurosurgery in particular will benefit greatly in terms of improved diagnostic and therapeutic capabilities. The recent explosion in nanotechnology products, including diverse applications such as beauty products and medical contrast agents, has been accompanied by an ever increasing volume of literature. Recent articles from our institution provided an historical and scientific background of nanotechnology, with a purposeful focus on nanomedicine. Future applications of nanotechnology to neuroscience and neurosurgery were briefly addressed. The present article is the first of two that will further this discussion by providing specific details of current nanotechnology applications and research related to neuroscience and clinical neurosurgery. This article also provides relevant perspective in scale, history, economics, and toxicology. Topics of specific importance to developments or advances of technologies used by neuroscientists and neurosurgeons are presented. In addition, advances in the field of microelectromechanical systems technology are discussed. Although larger than nanoscale, microelectromechanical systems technologies will play an important role in the future of medicine and neurosurgery. The second article will discuss current nanotechnologies that are being, or will be in the near future, incorporated into the armamentarium of the neurosurgeon. The goal of these articles is to keep the neuroscience community abreast of current developments in nanotechnology, nanomedicine, and, in particular, nanoneurosurgery, and to present possibilities for future applications of nanotechnology. As applications of nanotechnology permeate all forms of scientific and medical research, clinical applications will continue to emerge. Physicians of the present and future must take an active role in shaping the design and research of nanotechnologies to ensure maximal clinical relevance and patient benefit.