Protective role of noradrenaline in benzo[a]pyrene-induced learning impairment in developing rat

Abstract
Benzo[a]pyrene (B[a]P), a carcinogen, affects brain development, learning, and memory. Isolated studies have reported that B[a]P elevates noradrenaline (NA) level that may modulate neuronal growth, learning, and memory. Therefore, we investigated in vivo and in vitro the effects of B[a]P on learning and memory and its possible mechanism of action. Intracisternal administration of B[a]P on postnatal day 5 significantly reduced learning and memory in adolescent rats as observed by probe test using the Morris water maze. The density of both the subunits of the N‐methyl‐D‐aspartate (NMDA) receptor, NMDAR1 and NMDAR2B, significantly increased in the hippocampus. In vitro, B[a]P significantly increased NMDAR1 in both C6 and Neuro2a cell lines, whereas NMDAR2B was significantly increased in C6 but was significantly decreased in Neuro2a. Pretreatment with NA prevented the B[a]P‐induced effect on NMDAR1 expression in both cell lines. However, although NA prevented the B[a]P‐mediated increase in NMDAR2B expression in C6, it further potentiated the decrease of NMDAR2B in Neuro2a cells. Also, NA prevented the B[a]P‐induced increase in intracellular Ca2+ both in C6 and in Neuro2a. Our findings show that postnatal exposure of developing rats to B[a]P impairs learning and memory even when the rats became adolescent. We also observed that the effects were mediated by elevated intracellular Ca2+ levels and increased expression of NMDAR; furthermore, NA exerted a protective effect by modulating those factors. NA differentially affects neurons and glia, which may have a compensatory role during toxic insults, especially from B[a]P.