Effect of Target Dynamics on Pharmacokinetics of a Novel Therapeutic Antibody against the Epidermal Growth Factor Receptor: Implications for the Mechanisms of Action

Abstract
The epidermal growth factor receptor (EGFR) is overexpressed on many solid tumors and represents an attractive target for antibody therapy. Here, we describe the effect of receptor-mediated antibody internalization on the pharmacokinetics and dose-effect relationship of a therapeutic monoclonal antibody (mAb) against EGFR (2F8). This mAb was previously found therapeutically active in mouse tumor models by two dose-dependent mechanisms of action: blockade of ligand binding and induction of antibody-dependent cell-mediated cytotoxicity. In vitro studies showed 2F8 to be rapidly internalized by EGFR-overexpressing cells. In vivo, accelerated 2F8 clearance was observed in cynomolgus monkeys at low doses but not at high doses. This enhanced clearance seemed to be receptor dependent and was included in a pharmacokinetic model designed to explain its nonlinearity. Receptor-mediated clearance was also found to affect in situ antibody concentrations in tumor tissue. Ex vivo analyses of xenograft tumors of 2F8-treated nude mice revealed that relatively high antibody plasma concentrations were required for maximum EGFR saturation in high-EGFR-expressing human A431 tumors, in contrast to lower-EGFR-expressing human xenograft tumors. In summary, receptor-mediated antibody internalization and degradation provides a saturable route of clearance that significantly affects pharmacokinetics, particularly at low antibody doses. EGFR saturation in normal tissues does not predict saturation in tumor tissue as local antibody concentrations in EGFR-overexpressing tumors may be more rapidly reduced by antibody internalization. Consequently, antibody saturation of the receptor may be affected, thereby affecting the local mechanism of action. (Cancer Res 2006; 66(15): 7630-8)