Effect of Electronic Structures of Au Clusters Stabilized by Poly(N-vinyl-2-pyrrolidone) on Aerobic Oxidation Catalysis

Abstract
Au clusters smaller than 1.5 nm and stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) showed higher activity for aerobic oxidation of alcohol than those of larger size or stabilized by poly(allylamine) (PAA). X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy of adsorbed CO, and X-ray absorption near edge structure measurements revealed that the catalytically active Au clusters are negatively charged by electron donation from PVP, and the catalytic activity is enhanced with increasing electron density on the Au core. Based on similar observations of Au cluster anions in the gas phase, we propose that electron transfer from the anionic Au cores of Au:PVP into the LUMO (π*) of O2 generates superoxo- or peroxo-like species, which plays a key role in the oxidation of alcohol. On the basis of these results, a simple principle is presented for the synthesis of Au oxidation catalysts stabilized by organic molecules.