Abrogation of TGF-β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition

Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease with no known effective pharmacological therapy. The fibroblastic foci of IPF contain activated myofibroblasts that are the major synthesizers of type I collagen. Transforming growth factor (TGF)-β1 promotes differentiation of fibroblasts into myofibroblasts in vitro and in vivo. In the current study, we investigated the molecular link between TGF-β1-mediated myofibroblast differentiation and histone deacetylase (HDAC) activity. Treatment of normal human lung fibroblasts (NHLFs) with the pan-HDAC inhibitor trichostatin A (TSA) inhibited TGF-β1-mediated α-smooth muscle actin (α-SMA) and α1type I collagen mRNA induction. TSA also blocked the TGF-β1-driven contractile response in NHLFs. The inhibition of α-SMA expression by TSA was associated with reduced phosphorylation of Akt, and a pharmacological inhibitor of Akt blocked TGF-β1-mediated α-SMA induction in a dose-dependent manner. HDAC4 knockdown was effective in inhibiting TGF-β1-stimulated α-SMA expression as well as the phosphorylation of Akt. Moreover, the inhibitors of protein phosphatase 2A and 1 (PP2A and PP1) rescued the TGF-β1-mediated α-SMA induction from the inhibitory effect of TSA. Together, these data demonstrate that the differentiation of NHLFs to myofibroblasts is HDAC4 dependent and requires phosphorylation of Akt.

This publication has 33 references indexed in Scilit: