Cloning and Characterization of the Flavobacterium johnsoniae Gliding Motility Genes gldD and gldE

Abstract
Cells of Flavobacterium johnsoniae move over surfaces by a process known as gliding motility. The mechanism of this form of motility is not known. Cells of F. johnsoniae propel latex spheres along their surfaces, which is thought to be a manifestation of the motility machinery. Three of the genes that are required for F. johnsoniae gliding motility, gldA , gldB , and ftsX , have recently been described. Tn 4351 mutagenesis was used to identify another gene, gldD , that is needed for gliding. Tn 4351 -induced gldD mutants formed nonspreading colonies, and cells failed to glide. They also lacked the ability to propel latex spheres and were resistant to bacteriophages that infect wild-type cells. Introduction of wild-type gldD into the mutants restored motility, ability to propel latex spheres, and sensitivity to bacteriophage infection. gldD codes for a cytoplasmic membrane protein that does not exhibit strong sequence similarity to proteins of known function. gldE , which lies immediately upstream of gldD , encodes another cytoplasmic membrane protein that may be involved in gliding motility. Overexpression of gldE partially suppressed the motility defects of a gldB point mutant, suggesting that GldB and GldE may interact. GldE exhibits sequence similarity to Borrelia burgdorferi TlyC and Salmonella enterica serovar Typhimurium CorC.