Experimental Study on the Estimation of Lever Arm in GPS/INS

Abstract
Lever-arm uncertainty can be an important error source in the integration of the Global Positioning System (GPS) and inertial navigation system (INS). This paper presents both numerical and experimental studies on the estimation of the lever arm in the integration of a very-low-grade inertial measurement unit (IMU) with an accurate single-antenna GPS measurement system. Covariance simulation results showed that maneuvers play an important role on the estimation of the lever arm and attitude. The length of the lever arm has a rather insignificant effect on the estimation of these. Experimental tests conducted with a low-cost microelectromechanical system (MEMS) IMU and a carrier-phase differential GPS (CDGPS) measurement system showed that the lever arm can be estimated with centimeter-level accuracy. The test results confirmed that angular motions and horizontal accelerations improve the estimates of the lever arm and yaw angle, respectively.

This publication has 15 references indexed in Scilit: