Molecular structures of the two most stable conformers of free glycine

Abstract
The equilibrium molecular structures of the two lowest-energy conformers of glycine, Gly-Ip and Gly-IIn, have been characterized by high-level ab initio electronic structure computations, including all-electron cc-pVTZ CCSD(T) geometry optimizations and 6-31G* MP2 quartic force fields, the latter to account for anharmonic zero-point vibrational effects to isotopologic rotational constants. Based on experimentally measured vibrationally averaged effective rotational constant sets of several isotopologues and our ab initio data for structural constraints and zero-point vibrational shifts, least-squares structural refinements were performed to determine improved Born-Oppenheimer equilibrium (re) structures of Gly-Ip and Gly-IIn. Without the ab initio constraints even the extensive set of empirical rotational constants available for 5 and 10 isotopologues of Gly-Ip and Gly-IIn, respectively, cannot satisfactorily fix their molecular structure. Excellent agreement between theory and experiment is found for the rotational constants of both conformers, the rms residual of the final fits being 7.8 and 51.6 kHz for Gly-Ip and Gly-IIn, respectively. High-level ab initio computations with focal point extrapolations determine the barrier to planarity separating Gly-IIp and Gly-IIn to be 20.5 ± 5.0 cm1. The equilibrium torsion angle τ(NCCO) of Gly-IIn, characterizing the deviation of its heavy-atom framework from planarity, is (11 ± 2)°. Nevertheless, in the ground vibrational state the effective structure of Gly-IIn has a plane of symmetry. © 2007 Wiley Periodicals, Inc. J Comput Chem 2007
Funding Information
  • U. S. National Science Foundation (NSF-CHE04-51445)
  • Hungarian Scientific Research Fund (OTKA T047185)
  • NSF-MTA-OTKA (INT-0312355)

This publication has 56 references indexed in Scilit: