Abstract
Siderophores are iron transport compounds produced by numerous microorganisms and which strongly chelate Fe(III), but not Fe(II). Other trivalent metals, such as Al(III), Cr(III), or Ga(III), are not capable of significantly displacing iron from siderophores. However, I demonstrate here that Ga(III) can effectively displace iron under reducing conditions. With ascorbate as reductant and ferrozine as Fe(II) trapping agent, the kinetics of reductive displacement of iron by Ga(III) were followed spectroscopically by the increase of absorbance at 562 nm due to formation of the Fe(II)-ferrozine complex. No significant reduction of siderophore occurred in the absence of Ga(III). With excess Ga(III), the displacement was quantitative and very rapid. The rate of metal exchange was pseudo first order with respect to Ga(III) concentration and highly pH dependent, suggesting that siderophore ligands are displaced from the iron in a concerted mechanism by Ga(III) and protonation to expose the Fe(III) to reduction by ascorbate. Reaction rates were dependent upon the structure of the siderophore, being greatest for ferric rhodotorulic acid and slowest for ferrichrome A at pH 5.4. The pH profile for ferric rhodotorulic acid was unusual in that it showed a maximum at pH 6.5, while all other siderophores examined showed an increase in rate as pH was lowered from 7.0. The physiological significance of this reaction to the clinical use of gallium is discussed.