Interval arithmetic

Abstract
We start with a mathematical definition of a real interval as a closed, connected set of reals. Interval arithmetic operations (addition, subtraction, multiplication, and division) are likewise defined mathematically and we provide algorithms for computing these operations assuming exact real arithmetic. Next, we define interval arithmetic operations on intervals with IEEE 754 floating point endpoints to be sound and optimal approximations of the real interval operations and we show that the IEEE standard's specification of operations involving the signed infinities, signed zeros, and the exact/inexact flag are such as to make a correct and optimal implementation more efficient. From the resulting theorems, we derive data that are sufficiently detailed to convert directly to a program for efficiently implementing the interval operations. Finally, we extend these results to the case of general intervals, which are defined as connected sets of reals that are not necessarily closed.

This publication has 4 references indexed in Scilit: