Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties

Abstract
Crystal facet engineering of semiconductors has become an important strategy for fine-tuning the physicochemical properties and thus optimizing the reactivity and selectivity of photocatalysts. In this review, we present the basic strategies for crystal facet engineering of photocatalysts and describe the recent advances in synthesizing faceted photocatalysts, in particular TiO2 crystals. The unique properties of faceted photocatalysts are discussed in relation to anisotropic corrosion, interaction dependence of adsorbates, photocatalytic selectivity, photo-reduction and oxidation sites, and photocatalytic reaction order. Ideas for future research on crystal facet engineering for improving the performance of photocatalysts are also proposed.