Abstract
1. The kinematics of pectoral-fin propulsion have been measured for Cymatogaster aggregata, 14·3 cm in length, during an increasing-velocity performance test. Acclimation and test temperature was 15 °C, similar to the fishes' normal environmental temperature for the time of year of the tests. 2. Locomotion was in the labriform mode. Within this mode two pectoral-fin patterns were observed, differing only in the details of fin kinematics. These differences resulted from the length of the propagated wave passed over the fin. At low swimming speeds, up to about 2 L/sec, the wavelength was relatively short, approximately twice the length of the trailing edge of the fin. At higher speeds, a wave of very much longer wavelength was passed over the fin. 3. The pectoral fin-beat cycle was divisible into abduction, adduction and refractory phases. Abduction and adduction phases were of equal duration, and the proportion of time occupied by these phases increased with swimming speed. The duration of the refractory phase decreased with increasing speed. 4. The kinematics indicated that thrust was generated throughout abduction and adduction phases, together with lift forces that cancelled out over a complete cycle. As a result of lift forces and the refractory phase the body moved in a figure-8 motion relative to the flow. 5. Pectoral fin-beat frequency and amplitude increased with swimming speed, and the product of frequencyxamplitude was linearly related to swimming speed. 6. Interactions between pectoral fin-beat frequency, amplitude, refractory phase and kinematic patterns were interpreted as a mechanism to permit the propulsive muscles to operate at optimum efficiency and power output over a wider range of swimming speeds than would otherwise be possible. 7. Pectoral-fin propulsion was augmented by caudal-fin propulsion only at swimming speeds greater than 3·4 L/sec. 8. The mean 45 min critical swimming speed was 3·94 L/sec, and compares favourably with similar levels of activity for fish swimming by means of body and caudal-fin movements.

This publication has 16 references indexed in Scilit: