Origin of thermal modal instabilities in large mode area fiber amplifiers

Abstract
We present a dynamic model of thermal modal instability in large mode area fiber amplifiers. This model allows the pump and signal optical intensity distributions to apply a time-varying heat load distribution within the fiber. This influences the temperature distribution that modifies the optical distributions through the thermo-optic effect thus creating a feedback loop that gives rise to time-dependent modal instability. We describe different regimes of operation for a representative fiber design. We find qualitative agreement between simulation results and experimental results obtained with a different fiber including the time-dependent behavior of the instability and the effects of different cooling configurations on the threshold. We describe the physical processes responsible for the onset of the instability and suggest possible mitigation approaches.