Analysis of the Reaction Coordinate of Photosynthetic Water Oxidation by Kinetic Measurements of 355 nm Absorption Changes at Different Temperatures in Photosystem II Preparations Suspended in Either H2O or D2O

Abstract
Flash-induced absorption changes at 355 nm were measured at different temperatures within the range of 2 degrees C S2) = 14 kJ/mol, EA(S2-->S3) = 35 kJ/mol, and EA(S3-->-->S0 + O2) = 21 kJ/mol for theta > 11 degrees C, 67 kJ/mol for theta < 11 degrees C in PS II core complexes dissolved in H2O; (b) replacement of exchangeable protons by deuterons causes only minor changes ( S2, S2 --> S3, and S3 -->--> S0 + O2, respectively. The corresponding values of PS II membrane fragments are 1.3, 1.3, and 1. 4. Based on these results and corresponding EA data reported in the literature for PS II membrane fragments from spinach [Renger, G., & Hanssum, B. (1992) FEBS Lett. 299, 28-32] and PS II particles from the thermophilic cyanobacterium Synechococcus vulcanus Copeland [Koike, H., Hanssum, B., Inoue, Y., & Renger, G. (1987) Biochim. Biophys. Acta 893, 524-533], the reaction coordinate of the redox sequence in the WOC is inferred to be almost invariant to the evolutionary development from cyanobacteria to higher plants. Furthermore, the rather high activation energy of the S2 --> S3 transition provides evidence for a significant structural change coupled with this reaction. Implications for the mechanism of photosynthetic water oxidation are discussed.