Measurements of insulin responses as predictive markers of pancreatic β-cell mass in normal and β-cell-reduced lean and obese Göttingen minipigs in vivo

Abstract
At present, the best available estimators of β-cell mass in humans are those based on measurement of insulin levels or appearance rates in the circulation. In several animal models, these estimators have been validated against β-cell mass in lean animals. However, as many diabetic humans are obese, a correlation between in vivo tests and β-cell mass must be evaluated over a range of body weights to include different levels of insulin sensitivity. For this purpose, obese ( n = 10) and lean ( n = 25) Göttingen minipigs were studied. β-Cell mass had been reduced ( n = 16 lean, n = 5 obese) with a combination of nicotinamide (67 mg/kg) and streptozotocin (125 mg/kg), acute insulin response (AIR) to intravenous glucose and/or arginine was tested, pulsatile insulin secretion was evaluated by deconvolution ( n = 30), and β-cell mass was determined histologically. AIR to 0.3 ( r2= 0.4502, P < 0.0001) or 0.6 g/kg glucose ( r2= 0.6806, P < 0.0001), 67 mg/kg arginine ( r2= 0.5730, P < 0.001), and maximum insulin concentration ( r2= 0.7726, P < 0.0001) were all correlated to β-cell mass when evaluated across study groups, and regression lines were not different between lean and obese groups except for AIR to 0.3 g/kg glucose. Baseline pulse mass was not significantly correlated to β-cell mass across the study groups ( r2= 0.1036, NS), whereas entrained pulse mass did show a correlation across groups ( r2= 0.4049, P < 0.001). This study supports the use of in vivo tests of insulin responses to evaluate β-cell mass over a range of body weights in the minipig. Extensive stimulation of insulin secretion by a combination of glucose and arginine seems to give the best correlation to β-cell mass.