Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions

Abstract
A facile and reproducible method for the synthesis of Ag3PO4/TiO2 visible light photocatalyst has been developed to improve the photocatalytic activity and stability of Ag3PO4. The innovation of this method is to in situ deposit Ag3PO4 nanoparticles onto the TiO2 (P25) surface forming a heterostructure. The improved activity of the Ag3PO4/TiO2 heterostructured photocatalyst for the degradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation is attributed to the increased surface area and enhanced absorption of MB and RhB. Furthermore, depositing Ag3PO4 onto the surface of TiO2 facilitates electron–hole separation that leads to the elevated photocatalytic activity. The heterostructured Ag3PO4/TiO2 photocatalyst significantly decreases the loading of noble metal Ag from 77 wt% to 47 wt%, thereby significantly reducing the cost for the practical application of Ag3PO4 photocatalyst.