A Field Study of Submicron Particles from the Combustion of Straw

Abstract
The evolution of small aerosol particles accompanying the combustion of straw for energy production is investigated. A sampling equipment specially designed for field measurements is described and characterized. The aerosol is studied by low-pressure cascade impactor and scanning mobility particle sizer, the particle morphology by transmission electron microscopy, and the chemical composition by energy dispersive x-ray analysis. The combustion gas contains 3–500 mg/Nm3 of submicron particles with a mean diameter of approximately 0.3 μm. The particles consist of almost pure potassium chloride and sulphate. The formation mechanism is analyzed by a theoretical simulation of the chemical reactions and the aerosol change during cooling of the flue gas. It is concluded that some sulphation of KC1 occurs in the gas phase although the sulphate concentration is much lower than predicted by an equilibrium assumption. The theoretical simulation proves that the fine mode particles can be formed by homogeneous nucleation of either KCl or K2SO4 as the first step and further growth occurs by coagulation and diffusive condensation of both KC1 and K4SO4 on existing particles.

This publication has 20 references indexed in Scilit: