Embedded model predictive control of unmanned micro aerial vehicles

Abstract
We propose a lightweight embedded system for stabilization and control of Unmanned Aerial Vehicles (UAVs) and particularly Micro Aerial Vehicles (MAVs). The system relies solely on onboard sensors to localize the MAV, which makes it suitable for experiments in GPS-denied environments. The system utilizes predictive controllers to find optimal control actions for the aircraft using only onboard computational resources. To show the practicality of the proposed system, we present several indoor and outdoor experiments with multiple quadrotor helicopters which demonstrate its capability of trajectory tracking and disturbance rejection.

This publication has 16 references indexed in Scilit: