Receptor engagement by viral interleukin-6 encoded by Kaposi sarcoma–associated herpesvirus

Abstract
Receptor usage by viral interleukin-6 (vIL-6), a virokine encoded by Kaposi sarcoma– associated herpesvirus, is an issue of controversy. Recently, the crystal structure of vIL-6 identified vIL-6 sites II and III as directly binding to glycoprotein (gp)130, the common signal transducer for the IL-6 family of cytokines. Site I of vIL-6, however, comprising the outward helical face of vIL-6, where human IL-6 (hIL-6) would interact with the specific α-chain IL-6 receptor (IL-6R), is accessible and not occupied by gp130. This study examined whether this unused vIL-6 surface is available for IL-6R binding. By enzyme-linked immunosorbent assay, vIL-6 bound to soluble gp130 (sgp130) but not to soluble IL-6R (sIL-6R). Using plasmon surface resonance, vIL-6 bound to sgp130 with a dissociation constant of 2.5 μM, corresponding to 1000-fold lower affinity than that of hIL-6/sIL-6R complex for gp130. sIL-6R neither bound to vIL-6 nor affected vIL-6 binding to gp130. In bioassays, vIL-6 activity was neutralized by 4 monoclonal antibodies (mAbs) recognizing a domain within vIL-6 site I, mapped to the C-terminal part of the AB-loop and the beginning of helix B. The homologous region in hIL-6 participates in site I binding to IL-6R. In addition, binding of vIL-6 to sgp130 was interfered with specifically by the 4 neutralizing anti–vIL-6 mAbs. Based on the vIL-6 crystal structure, the vIL-6 neutralizing mAbs map outside the binding interface to gp130, suggesting that they either produce allosteric changes or block necessary conformational changes in vIL-6 preceding its binding to gp130. These results document that vIL-6 does not bind IL-6R and suggest that conformational change may be critical to vIL-6 function.