Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy

Abstract
We present a method to compute accurately the weak anisotropy of the solid-liquid interfacial free energy, a parameter which influences dendritic evolution in materials with atomically rough interfaces. The method is based on monitoring interfacial fluctuations during molecular dynamics simulation and extracting the interfacial stiffness which is an order of magnitude more anisotropic than the interfacial free energy. We present results for pure Ni with interatomic potentials derived from the embedded atom method.