Abstract
A new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only “acoustic” phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to the appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the T1/2 temperature dependence of the wire thermal conductance. Experimental situations where the new regime is likely to be detected are discussed.