Airflows inside passenger cars and implications for airborne disease transmission

Abstract
Transmission of highly infectious respiratory diseases, including SARS-CoV-2, is facilitated by the transport of exhaled droplets and aerosols that can remain suspended in air for extended periods of time. A passenger car cabin represents one such situation with an elevated risk of pathogen transmission. Here we present results from numerical simulations to assess how the in-cabin microclimate of a car can potentially spread pathogenic species between occupants, for a variety of open and closed window configurations. We estimate relative concentrations and residence times of a non-interacting, passive scalar–a proxy for infectious particles–being advected and diffused by turbulent air flows inside the cabin. An air flow pattern that travels across the cabin, farthest from the occupants can potentially reduce the transmission risk. Our findings reveal the complex fluid dynamics during everyday commutes, and non-intuitive ways in which open windows can either increase or suppress airborne transmission.

This publication has 39 references indexed in Scilit: