Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments

Abstract
This article is the first one in a series dedicated to the study of hyaluronan as observed by IR spectrometry. The goal is to determine its hydration mechanism and the structural changes this mechanism implies. Hyaluronan is a natural polysaccharide that is widely used in biomedical applications and cosmetics. Its macroscopic properties are significantly dependent on its degree of hydration. In this article we record the IR spectrum of a several micron thick dried film and deduce that four or five residual H2O molecules remain around each disaccharide repeat unit in the dried film. We then compare the spectra of sodium hyaluronan and its acid form to assign vibrational bands linked to the carboxylate group. We proceed with a qualitative analysis of the spectral changes induced by changes of temperature and hygroscopicity, two independent parameters that act by modifying the hydrogen bond network of the sample. This enables us to assign most of the vibrational bands of the hydrophilic groups and to distinguish the bands that are due to these hydrophilic groups when they are or are not hydrogen bonded. It constitutes a prerequisite for the quantitative analysis of hydration spectra that will be described in the following articles of this series. © 2002 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 10–20, 2003