Abstract
The efficiency of using palm tree leaves to remove zinc ions from aqueous solution was studied. Adsorption isotherms, kinetics, and thermodynamics studies were conducted. The influence of different experimental parameters, such as equilibrium pH, shaking rate, temperature, and the presence of other pollutants such as chelating agents on the biosorption of zinc on palm tree leaves was investigated. Batch biosorption experiments showed that palm tree leaves used in this study proved to be suitable for the removal of zinc from dilute solutions where a maximum uptake capacity of 14.7 mg/g was obtained at 25°C. Zinc biosorption on palm tree leaves was found to be highly pH dependent. The biosorption process was found to be rapid with 90% of the adsorption completed in about 10 min. Dynamics studies of the biosorption of zinc on palm tree leaves showed that the biosorption process followed the pseudo second‐order kinetics with little intraparticle diffusion mechanism contribution. The equilibrium results indicated that zinc biosorption on palm tree leaves could be described by the Langmuir, Freundlich, Gin et al., and Sips models. Using the Langmuir equilibrium constants obtained at different temperatures, the thermodynamics properties of the biosorption (ΔG0, ΔH0, and ΔS0) were also determined. The values of these parameters indicated the spontaneous and endothermic nature of zinc biosorption on palm tree leaves.