Regional relationships between climate and wildfire-burned area in the Interior West, USA

Abstract
Recent studies have linked the Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) with drought occurrence in the interior United States. This study evaluates the influence of AMO and PDO phases on interannual relationships between climate and wildfire-burned area during the 20th century. Palmer's Drought Severity Index (PDSI) is strongly related to burned area at both regional and subregional scales. In the southern Interior West, PDSI is most strongly related to yearly burned area during warm-phase AMO, while for the same period no significant relationships exist between PDSI and burned area in the central Interior West. During cool-phase PDO, interannual climate has little influence on burned area in either the northern or the central Interior West. The opposite is true for the southern Interior West and the eastern slope of the Colorado Rockies using the Southern Oscillation Index and PDSI, respectively. The western slope of the Colorado Rockies is the only climate division or region in which burned area is not related to preceding PDSI. During warm-phase PDO, current PDSI explains 67% of the interannual variance in burned area on the western slope. These regional and temporal differences are most likely governed by variations in fuel dynamics associated with dominant regional and subregional vegetation types.