Prolyl Hydroxylase Domain Protein 2 Silencing Enhances the Survival and Paracrine Function of Transplanted Adipose-Derived Stem Cells in Infarcted Myocardium

Abstract
Rationale:Transplantation of stem cells into damaged hearts has had modest success as a treatment for ischemic heart disease. One of the limitations is the poor stem cell survival in the diseased microenvironment. Prolyl hydroxylase domain protein 2 (PHD2) is a cellular oxygen sensor that regulates 2 key transcription factors involved in cell survival and inflammation: hypoxia-inducible factor and nuclear factor-κB. Objective:We studied whether and how PHD2 silencing in human adipose-derived stem cells (ADSCs) enhances their cardioprotective effects after transplantation into infarcted hearts. Methods and Results:ADSCs were transduced with lentiviral short hairpin RNA against prolyl hydroxylase domain protein 2 (shPHD2) to silence PHD2. ADSCs, with or without shPHD2, were transplanted after myocardial infarction in mice. ADSCs reduced cardiomyocyte apoptosis, fibrosis, and infarct size and improved cardiac function. shPHD2-ADSCs exerted significantly more protection. PHD2 silencing induced greater ADSC su...

This publication has 39 references indexed in Scilit: