Impaired Somatodendritic Responses to Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) of Supraoptic Neurones in PACAP type I -Receptor Deficient Mice

Abstract
The role of pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor (PAC1 receptor) in regulating hypothalamic supraoptic neurones was investigated using PAC1 receptor-deficient male mice (PAC1-/-). The effects of PACAP on [Ca2+]i were investigated in freshly dissociated supraoptic neurones and on the somatodendritic release of vasopressin and oxytocin, examined on intact supraoptic nuclei. In supraoptic neurones from wild-type mice (PAC1+/+), 100 nm PACAP induced an increase in [Ca2+]i and release of vasopressin and oxytocin, whereas in heterozygous (PAC1+/-) and null-mutant mice (PAC1-/-), PACAP was much less effective. PACAP had no effect on these two parameters when applied to isolated neurohypophysial nerve terminals of PAC1+/+ and PAC1-/- mice, and rats. In conclusion, the PAC1 receptor is solely responsible for the PACAP-induced [Ca2+]i signalling and secretion of vasopressin and oxytocin in the somatodendritic region of supraoptic neurones.

This publication has 38 references indexed in Scilit: