Surface Hall Effect and Nonlocal Transport in SmB6: Evidence for Surface Conduction

Top Cited Papers
Open Access
Abstract
A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. The surface transport, however, remains difficult to isolate from the bulk conduction in most existing TI crystals (particularly Bi2Se3, Bi2Te3 and Sb2Te3) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB6 the thickness-independent surface Hall effects and non-local transport, which persist after various surface perturbations. These results serve as proof that at low temperatures SmB6 has a metallic surface that surrounds an insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.