Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes

Abstract
Cardiac alternans is a recognized risk factor for cardiac arrhythmia and sudden cardiac death. At the cellular level, Ca2+ alternans appears as cytosolic Ca2+ transients of alternating amplitude at regular beating frequency. Cardiac alternans is a multifactorial process but has been linked to disturbances in intracellular Ca2+ regulation. In atrial myocytes, we tested the role of voltage-gated Ca2+ current, sarcoplasmic reticulum (SR) Ca2+ load, and restitution properties of SR Ca2+ release for the occurrence of pacing-induced Ca2+ alternans. Voltage-clamp experiments revealed that peak Ca2+ current was not affected during alternans, and alternans of end-diastolic SR Ca2+ load, evaluated by application of caffeine or measured directly with an intra-SR fluorescent Ca2+ indicator (fluo-5N), were not a requirement for cytosolic Ca2+ alternans. Restitution properties and kinetics of refractoriness of Ca2+ release after activation during alternans were evaluated by four different approaches: measurements of 1) the delay (latency) of occurrence of spontaneous global Ca2+ releases and 2) Ca2+ spark frequency, both during rest after a large and small alternans Ca2+ transient; 3) the magnitude of premature action potential-induced Ca2+ transients after a large and small beat; and 4) the efficacy of a photolytically induced Ca2+ signal (Ca2+ uncaging from DM-nitrophen) to trigger additional Ca2+ release during alternans. The results showed that the latency of global spontaneous Ca2+ release was prolonged and Ca2+ spark frequency was decreased after the large Ca2+ transient during alternans. Furthermore, the restitution curve of the Ca2+ transient elicited by premature action potentials or by photolysis-induced Ca2+ release from the SR lagged behind after a large-amplitude transient during alternans compared with the small-amplitude transient. The data demonstrate that beat-to-beat alternation of the time-dependent restitution properties and refractory kinetics of the SR Ca2+ release mechanism represents a key mechanism underlying cardiac alternans.