Activation of Intestinal Guanylate Cyclase by Heat-Stable Enterotoxin of Escherichia coli: Studies of Tissue Specificity, Potential Receptors, and Intermediates

Abstract
Heat-stable enterotoxin (ST) of Escherichia coli increased guanylate cyclase activity in homogenates of rat and rabbit intestinal mucosa and stimulated intestinal fluid secretion in suckling mice. The ST effect on guanylate cyclase was dose-dependent, occurred without a time lag, and was confined to the particulate fraction. ST activation of guanylate cyclase was tissue-specific; ST did not alter activity of soluble or particulate rat liver, lung, heart, kidney, or cerebral cortex enzyme. The ST activity on guanylate cyclase and secretion was methanol-soluble and alkali-labile, and its effects were not altered by phentolamine, propranolol, or atropine. Monosialoganglioside did not reduce ST-induced secretion. However, indomethacin and butylated hydroxyanisole decreased the ST effect on both guanylate cyclase and secretion. Fluid secretion with ST appears to result from specific activation of particulate intestinal guanylate cyclase. While adrenergic and cholinergic events are probably not involved in this process, the effects of ST may be mediated through prostaglandin synthesis or oxidative mechanisms.