Cellular Compartmentation of Zinc in Leaves of the Hyperaccumulator Thlaspi caerulescens1

Abstract
Cellular compartmentation of Zn in the leaves of the hyperaccumulator Thlaspi caerulescens was investigated using energy-dispersive x-ray microanalysis and single-cell sap extraction. Energy-dispersive x-ray microanalysis of frozen, hydrated leaf tissues showed greatly enhanced Zn accumulation in the epidermis compared with the mesophyll cells. The relative Zn concentration in the epidermal cells correlated linearly with cell length in both young and mature leaves, suggesting that vacuolation of epidermal cells may promote the preferential Zn accumulation. The results from single-cell sap sampling showed that the Zn concentrations in the epidermal vacuolar sap were 5 to 6.5 times higher than those in the mesophyll sap and reached an average of 385 mm in plants with 20,000 μg Zn g−1 dry weight of shoots. Even when the growth medium contained no elevated Zn, preferential Zn accumulation in the epidermal vacuoles was still evident. The concentrations of K, Cl, P, and Ca in the epidermal sap generally decreased with increasing Zn. There was no evidence of association of Zn with either P or S. The present study demonstrates that Zn is sequestered in a soluble form predominantly in the epidermal vacuoles in T. caerulescens leaves and that mesophyll cells are able to tolerate up to at least 60 mm Zn in their sap.

This publication has 21 references indexed in Scilit: