The antimicrobial peptide LL‐37 modulates the inflammatory and host defense response of human neutrophils

Abstract
The human cathelicidin antimicrobial peptide acts as an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory effects. The aim of this study was to test whether the cathelicidin LL‐37 modulates the response of neutrophils to microbial stimulation. Human neutrophils were exposed to LPS, Staphylococcus aureus and Pseudomonas aeruginosa subsequent to incubation with LL‐37 and cytokine release was measured by ELISA. The incubation with LL‐37 significantly decreased the release of proinflammatory cytokines from stimulated human neutrophils. ROS production of neutrophils was determined by a luminometric and a flow cytometry method. The peptide induced the production of ROS and the engulfment of bacteria into neutrophils. Peritoneal mouse neutrophils isolated from CRAMP‐deficient and WT animals were treated with LPS and TNF‐α in the supernatant was measured by ELISA. Antimicrobial activity of neutrophils was detected by incubating neutrophils isolated from CRAMP‐knockout and WT mice with bacteria. Neutrophils from CRAMP‐deficient mice released significantly more TNF‐α after bacterial stimulation and showed decreased antimicrobial activity as compared to cells from WT animals. In conclusion, LL‐37 modulates the response of neutrophils to bacterial activation. Cathelicidin controls the release of inflammatory mediators while increasing antimicrobial activity of neutrophils.