Functionalization and post-functionalization: a step towards polyoxometalate-based materials

Abstract
Polyoxometalates (POMs) have remarkable properties and a great deal of potential to meet contemporary societal demands regarding health, environment, energy and information technologies. However, implementation of POMs in various functional architectures, devices or materials requires a processing step. Most developments have considered the exchange of POM counterions in an electrostatically driven approach: immobilization of POMs on electrodes and other surfaces including oxides, embedding in polymers, incorporation into Layer-by-Layer assemblies or Langmuir–Blodgett films and hierarchical self-assembly of surfactant-encapsulated POMs have thus been thoroughly investigated. Meanwhile, the field of organic–inorganic POM hybrids has expanded and offers the opportunity to explore the covalent approach for the organization or immobilization of POMs. In this critical review, we focus on the use of POM hybrids in selected fields of applications such as catalysis, energy conversion and molecular nanosciences and we endeavor to discuss the impact of the covalent approach compared to the electrostatic one. The synthesis of organic–inorganic POM hybrids starting from bare POMs, that is the direct functionalization of POMs, is well documented and reliable and efficient synthetic procedures are available. However, as the complexity of the targeted functional system increases a multi-step strategy relying on the post-functionalization of preformed hybrid POM platforms could prove more appealing. In the second part of this review, we thus survey the synthetic methodologies of post-functionalization of POMs and critically discuss the opportunities it offers compared to direct functionalization.