Location and activity of ubiquinone 10 and ubiquinone analogs in model and biological membranes

Abstract
Deuteriated analogues of ubiquinone 10 (Q10) have been dispersed with plasma membranes of Escherichia coli and with the inner membranes of beetroot mitochondria. Orientational order at various deuteriated sites was measured by solid-state deuterium nuclear magnetic resonance (2H NMR). Similar measurements were made, using the compounds dispersed in dimyristoylphosphatidylcholine (DMPC) and egg yolk lecithin and dispersions prepared from the lipid extracts of beetroot mitochondria. In all cases only a single unresolved 2H NMR spectrum (typically 1000-Hz full width at half-height) was observed at concentrations down to 0.02 mol % Q10 per membrane lipid. This result shows that most Q10 is in a mobile environment which is physically separate from the orientational constraints of the bilayer lipid chains. In contrast, a short-chain analogue of Q10, in which the 10 isoprene groups have been replaced by a perdeuteriated tridecyl chain, showed 2H NMR spectra with quadrupolar splittings typical of an ordered lipid that is intercalated into the bilayer. The NADH oxidase activity and O2 uptake in Escherichia coli and in mitochondria were independent of which analogue was incorporated into the membrane. Thus, despite the major difference in their physical association with membranes, or their lipid extracts, the electron transport function of the long- and short-chain ubiquinones is similar, suggesting that the bulk of the long-chain ubiquinone does not have a direct function in electron transporting activity. The physiologically active Q10 may only be a small fraction of the total ubiquinone, a fraction that is below the level of detection of the present NMR equipment.(ABSTRACT TRUNCATED AT 250 WORDS)