Regulation of angiotensin-converting enzyme production by nicotine in human endothelial cells

Abstract
Nicotine, a component of cigarette smoke, has been implicated in the pathogenesis of cardiovascular disease. We examined whether nicotine regulates angiotensin-converting enzyme (ACE), an enzyme that plays an important role in the pathophysiology of atherosclerosis and hypertension. Human umbilical cord vein endothelial cells were treated with nicotine (0.1–1 μM) alone or in combination with vascular endothelial growth factor (VEGF; 0.5 nM) or GF-109203X (GFX; 2.5 μM). The amount of ACE in intact endothelial cells was measured by an inhibitor-binding assay method, and ACE mRNA levels were quantified using LightCycler technology. Phosphorylated PKC levels were measured by Western immunoblotting. Nicotine did not modulate basal ACE production but significantly potentiated VEGF-induced ACE upregulation. Treatment of endothelial cells with the PKC inhibitor GFX totally blocked VEGF- and nicotine-induced ACE upregulation. VEGF induced PKC phosphorylation, which was potentiated by cotreatment with nicotine. We conclude that nicotine significantly potentiated VEGF-induced ACE upregulation. This effect was probably mediated by PKC phosphorylation. The interaction of nicotine with VEGF in ACE induction may contribute to the pathogenesis of smoking-related cardiovascular disease.