Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting

Abstract
Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.
Funding Information
  • Korea Electric Power Corporation (R17XA05-10)
  • National Research Foundation of Korea (2017M3D1A1040828, 2016R1C1B1014649)